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ON A FUNCTIONAL EQUATION
ARISING IN THI STABILITY THEORY

OF DIFFERENCE-DIFFLERENTIAL EQUATIONS

Abstract: The functional differential equation

tan > o
where A,B are n x n constant matrices,?»7T (5,0, Q(t)

Q' (t) = AQ(t) + pQT(T_t)”, ~) <t < [a,

»

nt

is a

differentiable n x n matrix and" Q?(t) is its transpose, 1is

studied.

its solutions is given.

This equation, of considerable interest in its own right,

Existence, uniqueness and an algebraic representation of

naturally arises in the construction of Liapunov functionals of

difference differential equations of the type ‘ﬁ(t)
il

+ Dx(t-7), where C,D are constant n x n matrices.

G (L)

+

The role

played by the matrix OQ(t) 1is analogous to the one played by a

positive definite matrix in the construction of Liapunov functions

for ordinary differential equations.

In this paper, we show that, in spite of the functional nature

of this equation,

: ; : : 2
the linear vector space of its solutions is n";

moreover, we give a complete algebraic characterization of its

solutions and indicate computationally simple methods for obtaining

these solutions, which we illustrate through an example.

Finally,

we briefly indicate how to obtain solutions for the nonhomogeneous

problem,

through the usual variation of constants method.




ON A FUNCTIONAL EQUATION

ARISING IN THE STABILITY THEORY

OF DIFFERENCE-DIFFERENTIAL EQUATIONS

I. Introduction

The study of difference-differential equations has received
considerable attention in recent times [2,6,7), the overwhelming
interest devoted to equations with positive delays.

In this brief paper we wish to study the matrix functional

equation
Q' (t) = AQ(t) + BQY(1-t), -m < t < (1.1)

where A,B are constant n X n matrices and 71 > 0. This eqguation
is neither of the retarded nor advanced type. We show, that,
unlike the infinite dimensionality of the vector space of solutions
of functional differential equations, the linear vector space of
solutions of this equation is n2. Moreover, we give a simple
algebraic characterization of these n? linearly independent
solutions which parallels the one for ordinary differential cquations,
indicate some methods of computation of these solutions and allude
to the variation of constants formula for the nonhomogeneous
problem.

This equation, of interest in its own right, is particularly
important since it arises naturally in the process of constructing
Liapunov functionals for retarded differential equations of the

form x'"(t) = Cx(t) + Dx(t-1). Datko [4] has encountered, in a




somewhat different form, this equation,

Repin [11], in his construction of Liapunov functionals uses this
equation, but does so erroncously in replacing, in (1.1), the
term BQT(T—t) by BQ(t-t), making the analysis trivial.

This equation has been used by Infante and Walker
construction of the Liapunov functional for a scalar difference-
differential equation. The study presented here arose in the use
of the solutions of this equation in a forthcoming paper

which treats the construction of Liapunov functionals for matrix

difference-differential equations.

II. Existence, Uniqueness and Algebraic Structure

of the Solutions

Consider the equation

Q' (£) = AQ(t) + BQT (1-t),

with the condition

K,

0
N~
I

where K 1is an arbitrary n x n

timately related to the differential equation

]

Q@ (e} AQ(t) + BR(t),

I

R'(t) =-Qt)BT - R(t)AT,

with the initial conditions

—_— <

matrix; this equation is in-

but has not studied it.

[9] in the




Moreover, for any two n X n matrices P,S, let the n2 X n2

matrix P ® S denote their Kronecker (or direct) product [1,10]

and introduce the notation for the n x n matrix

n
Il
0n
]

(S*l,-..,s*n)l

where S * and s are, respectively, the g row and the

p
J

jth column of S; further, let there correspond, to the n * n

matrix S, the n’-vector s = (Sl*""’sn*)T'

With this notation [1,10], equations (2.3) and (2.4) can be

rewritten as

]

g (t) A®I B® I||a(t)
- . (2.5)
r(t) -1 ® B =T ® Al |x(t)
and
T {1 E &
a(3) = [Kpgreeerk W]y £(3) = [Ryyreearky 17, (2.6)

which, with the obvious correspondence and for simplicity of notation,

we denote as




Here, p(t) 1is an 2n2—vector and € 1is a 2n2 i 2n2 constant

matrix.
The use of the Kronecker product, which has allowed us to re-
duce (2.3) - (2.4) to (2.7) - (2.8) permits us to prove our first

result.

Theorem l: Equation 2.1 with condition (2.2) has a unique solution

Q(t) for == < t < =,

Proof: 1If equation (2.1) with condition (2.2) has a differ-
entiable solution Q(t), then, defining R(t) = 0T (t-t), the
pair of matrices Q(t), R(t) will satisfy equations (2.3) and (2.4);
hence, with the notation introduced above, the pair of vectors q(t)
and r(t) will satisfy equations (2.5), (2.6). These remarks, the
linearity of all the involved equations, and the uniqueness of the
solutions of (2.5) - (2.6) immediately implies that if a solution
Q(t) exist, it is unique.

Oon the other hand, (2.5) = (2.6) has a unique solution defined
for -» < t < », and this implies the existence of a unique pair
of differentiable matrices Q(t) and R(t) defined for -« < t < «
and satisfying (2.3) - (2.4). But these last equations can he re-

written as

Q(t) = AQ(t) + BR(t),

QIQ
s

RT (=) = AR (t=t) + BO’ (t=t),

Q!Q-
o+

with initial condition




8y

Q(z) = K = RT(é), (2.10) ;

from which it follows, from uniqueness, that R(t) = QT(T—t),

completing the proof.
Examination of the above proof makes it clear that knowledge
of the solution of (2.5) - (2.6) immediately yiclds the solution ol
(2.1) - (2.2). But (2.5) - (2.6) is a standard initial value
problem in ordinary differential equations; the structure of the
solutions of such problems is well known [3,5]. Morcover, since
the 2n2 X 2n2 matrix C has a very special structure, it should
be possible to recover the structure of the solutions of
equation 2.1.
Let us consider, for the moment, the solutions of equation
(2.5). Recall [3,5] that it has 2n2 linearly independent solutions
which can be obtained in the following fashion. Let \l,...,\P,

p = 2n2, be the distinct eigenvalues of the matrix C, that is,

solutions of the determinental equation

(AI-A) € I ~B @ I
det [AI-C] = det = 0; (2 21}
I @B I ® (MNI+A)
each Aj’ j = lseverp with algebraic multiplicity mj and geometric

S
r r
s

n. 2n2. Then, 2n2 linearly
J r=1 J

multiplicities n =My o b .
g

independent solutions of (2.5) (or (2.7)) are given by

——— — p— ‘ ‘:




- i
5 - ; (2.12)

s
where g = l,...,ng, o G BTN | ny =my o, ) my = 2n2, and
=1 i

the 2n2 linearly independent eigenvectors and generalized eigen-

vectors are given by

T e , e. = 0. (2.13)

i-1 0
JrX J.X

A.I-Cle
[ 3 ]
A change of notation, and a return from the vector to the matrix
form, shows that 2n2 linearly independent solutions of (2.3)

are given by

q i
t . :
o T e e
o an ! _ ] (2.14)
q g=g | GRARE gl
¥ (&) jrxi|
Js s -
T T T
for g = l,ees oy T = Leavopsy = Liesonby 5 Nie = WMa o
J nﬁl i) J
Z mj = 2n2, and where the generalized eigenmatrix pair (L; r,M; r)
j ’ r

associated with the eigenvalue Xj , satisfy the equations

i 1 i-1
(M.I-A)L. - BM. ==L, v
J Jlr Jlr Jlr (2.15)
i 4 i i i-1
Ers B™ + M. ALI+A ==M,
J.r Jlr( J ) Jpk 7




sl r = AT
for 3 = l,...,nj, r = l,.-.,s, Lj,S = ”],S = 0.

The structure of these equations is a most particular one;
indeed, if they are multiplied bv =1, transposed, and written in

reverse order, they yield

£ ¢ et
(=A.I=-A)M; — BRI = M. F
L Aet Jet (2.16)
;T iT 5 i ll’r
l —
M. B % 3. -X.I+A |
e ,r( ) pig b
i OT OT
For ‘& = Lo R, E o= bt s N = M. = 0. But this result
i J. X Jek

demonstrates that if Aj 1s a selution eof (2.11), -\j will also

be a solution; moreover Aj and —Kj have the same geometric
multiplicities and the same algebraic multiplicity. Hence, the
distinct eigenvalues always appear in pairs (Aj,—lj), and an
examination of equations (2.15) and (2.16) shows that if the
generalized eigenmatrix pairs corresponding to kj are (L;'r,Mg’r),
the generalized eigenmatrix pairs corresponding to —Xj will be
((-1) i”mji:rr ) (1) i”LJfL:rr) .

But these remarks imply that if the solution (2.12) correspond-

ing to ). 1is added to the solution (2.12) corresponding to -\j

multiplied by (—l)q+l, the n2 linearly independent solutions of

(2.3) given by




qT
satisfy the condition Eg r(%) = Hj’r(%). But this is precisely
’

condition (2.4); it therefore follows that

T i t i
q (t - =) ALt - 5) . s iE = T
] i 2 j PR gL Ay
= = ir + (-1 > M: 2009
j,r( ) 121 G171 [ Ij,r (-1) C S,Yl' (2.17)
Y S r ° 2 2
for g = liewediiopn J W, S, F W = Z0  BIE B linearly in-
3 p=y J J Zj J

dependent solutions of (2.1). We have, therefore proven

Theorem 2: Equation 2.1 has n2 linearly independent solutions given

bv equation 2.17, where the generalized eigenmatrix pairs (L?F,Mév
o S

satisfy equation 2.17 for one of the elements of the pair (A., /j)'

each of which is a solution of equation 2.11.

It is interesting to remark that the determinental cquation
4 ; 2 : ; i
(Z+ L1}, dinvolving & 2 X 2n2 determinant, given the commutativity

of its elements, can always be rewritten as

det([(AI-A) ® (AI+A) + B ® B] = 0. (2:18)




Theorem 2 gives the desired algebraic representation of the solu-
tions, a representation which is completely analogous to that for %
ordinary differential equations. It is surprising that the vector -

9 i
space of solutions of (2.1) has dimension n". 2

III. Some Further Characterizations

Theorem 2 of the previous section gives a complete characteriza-
tion of the solutions of our original functional equation. It is
possible, however, to give some further properties of the eigen-
matrix pairs in certain particular cases; these further characteriza-
tions of the eigenmatrix pairs are verv useful from a computational

viewpoint, as we demonstrate in the next section.

Lemma 1: If, for a A. satisfying equation 2.18, there exists

an «. # 0 and corresponding vectors xj,yj such that

\I iR = Blx. = O
[ -] \LJ ] J !
(3.1)

[\jI + A+ - Bly. Oy

o J

then equation 2,15 1s satisfred fior @ = 1 with L; =Y

J,r 3= 3
”l G ('v_.L% . 5
M, X T

Proof: A simple substitution of the indicated result into 3

equation (2.15) shows that this equation is satisfied.

The proofs of the following two lemmas are equally obvious.




T T

10

Lemma 2 If, for a Aj satisfying equation 2,18, there exist

vectors xj’yj such Ehat

Bx. = 0
J
(3ie2)
AsI+R)y. = 0
(J )yJ
then equation (2.15) is satisfied for i = 1 with L% B 0,
4
i a5
M. = Y
Gk T
Lemma 3: Lf, for a X, satisEwing Eguation 2.18 there exist
vectors xj,yj such that
(AjI-A)x. = 0
(33}
BRy. = 0
3/

then equation 2.15 is satisfied for i = 1 with

It is noted that, if the assumptions of any of these three lemmas
hold, then the form of our eigenmatrix pairs is dvadic. More-
over, determination of the xj depends on simultaneous solutions

of the determinental equations, for a given Xj satisfving (2.18),

det X j].-l\-u .]B] = 0,
' : (3.4)

det[) T + A + SlB) - 0,




1)

for Lemma 2 we let %— = 0 and, for Lemma 3, “j = 0. The
J
computations involved for the determination of “j'xj and yj are

where,

much simpler than those implied by equation t2. 0150,

If B and either (AjI—A) or (XjI + A) are not invertible,
then Lemmas 28 and 3 apply. " Tt is5 net diffiecult to show that, if
such is not the case, there always exists at least one aj # 0
such that (3.4) is satisfied, which implies the applicability

of Lemma 1.

Lemma 4: If either B 1s invertible or (XjI-A) and (AjI+A)

Proot: ©If B 1S invertible, fer a given j,r and i = 1,

cquations (2.15) are equivalent to

-1
B ih IR LAl =t
J Jiles sy J.r
(3.5}
=3 1 o opTL
B3 (A.I=-A)M. (A.I+A) B = =M. .
J J. ) J.X
But this implies that the matrix [B_l()jl-—]\.)] 0 [B'l(>.jI+A)]
has at least one eigenvalue that equals =-1. Since [10] the eigen-

values of a Kronecker product are the products of the eigenvalues of
the two matrices appearing in the product, then there exist an
“j # 0 and vectors xj and Y such that

BT (A, I=A)%, = a,%,,

are invertible, then there exist an ”j # 0 which satisfies (2.22).
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which is equivalent to the assumptions of Lemma 1.

If B 1is not invertible but (AjI—A) and (XjI+A) are both

invertible, then (2.15), for i = 1, are equivalent to
=1 gL i 1
A.I=-A B L. BT ER = ~L.
: 3 ! J.r ( J ) J.x
] -1 1L T T, -1 1
ALI=A B M. B (A.I+A = ~M.
{ J ! J.X { J ) J. T

and a repetition of the above argument leads to the same conclusion.
These last four Lemmas imply that, associated with each distinct

cigenvalue pair (lj,—Aj), a solution (2.17) to our equation exists

: . il I
Ly which L. o and Mj p  Are for some r dvadic and linearly dependent.
o r &

It is also worth remarking that Lemmas 1-3 are not exclusive, and

that more than one set (uj,xj,yj) could, in some cases, be ob-

tained from the appropriate equations, vielding a similar result

for other values of r.

IV. An Example

llecre we present, as an illustration of the computations in-
volved, the construction of the linecarly independent solutions for
a 2 x 2 systems of the form

Q' (t) = AQ(Lt) + BQT(T=t), == <t <& , (4.1)

where, for illustrative purposes, we have chosen

(4.2)




For the computation of the eigenvalues,

(2.18) gives

(XI-A) © I

dot

I & B

(kx+5)(x-5) + 16 0 0
S 8 (A+5) (A=2) 0 E
8 0 (A+2) (A=5)
L 4 0 (A+2) (A=2)
from which we obtain the four pairs of roots (Al,-Xl) = (5,=5),
(\»21-/\\2) = (3/-3)1 ()~31—/\3) (21_2)1 (>\4,—'K4) = (2("2) =3 (>31_’\3)'

For the first pair,

and that B

(3.2) yields that

Bx

h)
('l

hence we have

solution

0, ot

I+A)yl £ 0, OF

]‘1

1,1 0 and

-8 & I

note that A

is not invertible.

= det[(\I-A) @ AT + A)+ B © B] =
Eo® (AL & AB

1:

the determinental equation

5 1is an eigenvalue of -A

Application of Lemma 2, equation

3 T M
0 0

vy
o 3|1
% U

[[1,0] vyielding the




e e —
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(=]
oo B

=L oo oma (=3
“'l,l(t) e s (4.3)
1 0
The second pair, (xz,—\z) = (3,~-3), does not consist of eigen-

values of either A or =-A. Hence, we search for an a such

that equations (3.4) are satisfied, that is

"2
det =0,
—
k 20, 3 + 2
f :
i
E and
E e . 2
3 -5+ — 4 0
: i
i det = Oy
5
: 4 3 - 2
g o
E ke =
'r
| which yields the value a, = 2. Eguatieons (3.1) with lj = 3 and
Wy = 2 now yield
5 1 ‘
4 -1

and, from our first lemma we obtain the solution




The last pair of eigenvalues is of algebraic multiplicity

two but it is easy to check that they are of geometric multiplicity

one, hence we can attempt to treat them once again through our

lemmas.
In the first case, \3 = 2 1is an eigenvalue of -A. Then
cquations (3.2) become
4 0
Bx = 0, or X = 0,
2 L 2 9 Fo il
-3 0
(A,I+A)y. = 0, or =0
3 y3,1 ’ 0 0 Y3'l ’
. 1 i 0
vielding L = 0 and M = [0,1], and therefore, the
b 3,1 3,1 1
solution
5 0 0
DN R . (4.5)
’ 0 1
In the sccond casce, \; = 4+2 1s an eigenvalue of A, still,

cquations (3.4) are satisfied for an tg # 07 indeed, we require

0,

det[‘gT-A—vgB] = det
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det[X3I + A + 1 B] = det =0,

\1,3

;lw
w
N
|
™o

which are clearly satisfied for

yielding, through IL.emma 1, the solution

0 0
]e-m-w i)

It is easily seen that these four solutions are linearly in-

dependent.

V. The HNonhomogeneous Problem

We briefly consider the nonhomogeneous problem

Q' (t) = AQ(t) + nr)T(x—t) + F(t), == < t < @ (5:1)

where A,B are constant n x n matrices and F(t) 1is a continuous
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n x n matrix. We seek a particular solution of this problem.
For simpiicity of notation, let the n2 linearly independent

solutions given by (2.17) be relabeled as Zk(t) = (Zi,j(t))'

k = l,...,nz. Then, in a manner completely analogous to that for

ordinary differential equations, we obtain
Theorem 3: Lquation 5.1 has a particular solution given by

t i
: J v ts)ds) T (2], (5.2) |
l 7

o] A
WU

where the r

k(s) are given below.

: : ’ . k
Proof: Substitution of (5.2) inte (5.1), given that the 2 (t) are
solutions of the homogeneous equation, yields that the rk(s) must

satisfy the equation

; : ; 2
In the notation of Section 2, define the n"-vectors

k Uk Ty e Py ; K T
]*,...,nn*(t)) r ELE) (rp (e, ry(t) 7,

9
and the N % n macoix WIE) =

Il

oy (E)Y = (z(t)

o

ro

£ (t)

1l
h

l*’tl.’ l1*) ’

(61,---,C 41« Then (5.3} is equavalent to

Wiereir) = £{t).

W(t) is clearly nonvanishing for all t, given the linear independence

of the solutions Z7(t); hence




r(t) = @ (e) £ (e)

and this concludes the proof,
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